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Please start each question on a new page.  Full marks are not necessarily awarded for a correct answer 

with no working.  Answers must be supported by working and/or explanations.  In particular, solutions 

found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to 

find a solution, you should sketch these as part of your answer.  Where an answer is incorrect, some marks 
may be given for a correct method, provided this is shown by written working.  You are therefore advised 

to show all working.

1. [Maximum mark:  13]

 A differential equation is given by 
d

d

y

x

y

x
= , where x > 0  and y > 0 .

 (a) Solve this differential equation by separating the variables, giving your answer 

in the form y f x= ( ) . [3 marks]

 (b) Solve the same differential equation by using the standard homogeneous 

substitution y vx= . [4 marks]

 (c) Solve the same differential equation by the use of an integrating factor. [5 marks]

 (d) If y = 20  when x = 2 , find  y  when x = 5 . [1 mark]

2. [Maximum mark:  12]

 Let the differential equation 
d

d

y

x
x y= + , ( )x y+ ≥ 0  satisfying the initial conditions 

y =1 when x =1.  Also let y c=  when x = 2 .

 (a) Use Euler’s method to find an approximation for the value of  c , using a step 

length of h = 0 1. .  Give your answer to four decimal places. [6 marks]

 You are told that if Euler’s method is used with h = 0 05.  then c � 2 7921. , if it is used 

with h = 0 01.  then c � 2 8099.  and if it is used with h = 0 005.  then c � 2 8121. .

 (b) Plot on graph paper, with  h  on the horizontal axis and the approximation for  c  

on the vertical axis, the four points (one of which you have calculated and three 
of which have been given).  Use a scale of 1 0 01cm = .  on both axes.  Take the 
horizontal axis from 0 to 0.12 and the vertical axis from 2.76 to 2.82. [3 marks]

 (c) Draw, by eye, the straight line that best fits these four points, using a ruler. [1 mark]

 (d) Use your graph to give the best possible estimate for  c , giving your answer to 

three decimal places. [2 marks]
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3. [Maximum mark:  17]

 (a) Prove that 
2

1
lim d

H

aH
x

x→∞ ∫  exists and find its value in terms of  a  (where a ∈
+

� ). [3 marks]

 (b) Use the integral test to prove that 
2

1

1

n n

∞

=

∑  converges. [3 marks]

 Let 
2

1

1

n

L
n

∞

=

=∑ .

 (c) The diagram below shows the graph of y
x

=
1

2
.

y

x1 2 3 k +1 k +2 k +3k 

  (i) Shade suitable regions on a copy of the diagram above and show that 

2 21
1

1 1
d

k

k
n

x L
n x

∞

+

=

+ <∑ ∫ .

  (ii) Similarly shade suitable regions on another copy of the diagram above and 

show that 
2 2

1

1 1
d

k

k
n

L x
n x

∞

=

< +∑ ∫ . [6 marks]

 (d) Hence show that 
1 1

1

1 1
2

1
2

1n k
L

n kn

k

n

k

= =

∑ ∑+
+

< < + . [2 marks]

 You are given that L =
π
2

6
.

 (e) By taking k = 4 , use the upper bound and lower bound for  L  to find an upper 
bound and lower bound for π .  Give your bounds to three significant figures. [3 marks]

diagram  

not to scale
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4. [Maximum mark:  18]

 (a) Use the limit comparison test to prove that 
1

1

( 1)n n n

∞

=
+

∑  converges. [5 marks]

 (b) Express 1

1n n( )+

 in partial fractions and hence find the value of 
1

1

( 1)n n n

∞

=
+

∑ . [4 marks]

 (c) Using the Maclaurin series for ln ( )1+ x , show that the Maclaurin series for 

( ) ln ( )1 1+ +x x  is 
1 1

1

( 1)

( 1)

n n

n

x
x

n n

+ +∞

=

−
+

+
∑ . [3 marks]

 (d) Hence find lim( ) ln ( )
x

x x
→−

+ +
1
1 1 . [2 marks]

 (e) Write down lim ln ( )
x

x x
→0

. [1 mark]

 (f) Hence find lim
x

xx
→0

. [3 marks]


